A galloping energy harvester with flow attachment
Aeroelastic energy harvesters are a promising technology for powering wireless sensors and microelectromechanical systems. In this letter, we present a harvester inspired by the trembling of aspen leaves in barely noticeable winds. The galloping energy harvester, a curved blade oriented perpendicula...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-03, Vol.114 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aeroelastic energy harvesters are a promising technology for powering wireless sensors and microelectromechanical systems. In this letter, we present a harvester inspired by the trembling of aspen leaves in barely noticeable winds. The galloping energy harvester, a curved blade oriented perpendicular to the flow, is capable of producing self-sustained oscillations at uncharacteristically low wind speeds. The dynamics of the harvesting system are studied experimentally and compared to a lumped parameter model. Numerical simulations quantitatively describe the experimentally observed dynamic behaviour. Flow visualisation is performed to investigate the patterns generated by the device. Dissimilar to many other galloping harvester designs, the flow is found to be attached at the rear surface of the blade when the blade is close to its zero displacement position, hence acting more closely to aerofoils rather than to conventionally used bluff bodies. Simulations of the device combined with a piezoelectric harvesting mechanism predict higher power output than that of a device with the square prism. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5083103 |