Understanding the charge transport mechanisms through ultrathin SiO x layers in passivated contacts for high-efficiency silicon solar cells

We report on the microscopic structure of the SiOx layer and the transport mechanism in polycrystalline Si (poly-Si) passivated contacts, which enable high-efficiency crystalline Si (c-Si) solar cells. Using electron beam induced current (EBIC) measurements, we accurately map nanoscale conduction-en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-02, Vol.114 (8)
Hauptverfasser: Kale, Abhijit S., Nemeth, William, Guthrey, Harvey, Kennedy, Ellis, Norman, Andrew G., Page, Matthew, Al-Jassim, Mowafak, Young, David L., Agarwal, Sumit, Stradins, Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the microscopic structure of the SiOx layer and the transport mechanism in polycrystalline Si (poly-Si) passivated contacts, which enable high-efficiency crystalline Si (c-Si) solar cells. Using electron beam induced current (EBIC) measurements, we accurately map nanoscale conduction-enabling pinholes in 2.2 nm thick SiOx layers in a poly-Si/SiOx/c-Si stack. These conduction enabling pinholes appear as bright spots in EBIC maps due to carrier transport and collection limitations introduced by the insulating 2.2 nm SiOx layer. Performing high-resolution transmission electron microscopy at a bright spot identified with EBIC reveals that conduction pinholes in SiOx can be regions of thin tunneling SiOx rather than a geometric pinhole. Additionally, selectively etching the underlying poly-Si layer in contacts with 1.5 and 2.2 nm thick SiOx layers using tetramethylammonium hydroxide results in pinhole-like etch features in both contacts. However, EBIC measurements for a contact with a thinner, 1.5 nm SiOx layer do not reveal pinholes, which is consistent with uniform tunneling transport through the 1.5 nm SiOx layer. Finally, we theoretically show that reducing the metal to the c-Si contact size from microns, like in the p-type passivated emitter rear contact, to tens of nanometers, like in poly-Si contacts, allows lowering of the unpassivated contact area by several orders of magnitude, thus resulting in excellent passivation, as has been demonstrated for these contacts.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5081832