Negative photoconductivity and hot-carrier bolometric detection of terahertz radiation in graphene-phosphorene hybrid structures

We consider the effect of terahertz (THz) radiation on the conductivity of the ungated and gated graphene (G)-phosphorene (P) hybrid structures and propose and evaluate the hot-carrier uncooled bolometric photodetectors based on the GP-lateral diodes (GP-LDs) and GP-field-effect transistors (GP-FETs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-04, Vol.125 (15)
Hauptverfasser: Ryzhii, V., Ryzhii, M., Ponomarev, D. S., Leiman, V. G., Mitin, V., Shur, M. S., Otsuji, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the effect of terahertz (THz) radiation on the conductivity of the ungated and gated graphene (G)-phosphorene (P) hybrid structures and propose and evaluate the hot-carrier uncooled bolometric photodetectors based on the GP-lateral diodes (GP-LDs) and GP-field-effect transistors (GP-FETs) with the GP-channel. The operation of the GP-LDs and GP-FET photodetectors is associated with the carrier heating by the incident radiation absorbed in the G-layer due to the intraband transitions. The carrier heating leads to the relocation of a significant fraction of the carriers into the P-layer. Due to a relatively low mobility of the carriers in the P-layer, their main role is associated with a substantial reinforcement of the scattering of the carriers. The GP-FET bolometric photodetector characteristics are effectively controlled by the gate voltage. A strong negative conductivity of the GP-channel can provide much higher responsivity of the THz hot-carriers GP-LD and GP-FET bolometric photodetectors in comparison with the bolometers with solely the G-channels.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5054142