Dissipative structures in shear-thickening complex fluids
The main objective of this work is to demonstrate that non-local terms of the structure variable and shear-stress is a sufficient condition to predict multiple bands in rheologically complex fluids, i.e., shear-thickening fluids. Here, shear bands are considered as dissipative structures arising fro...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2018-11, Vol.30 (11) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main objective of this work is to demonstrate that non-local terms of the structure variable and shear-stress is a sufficient condition to predict multiple bands in rheologically complex fluids, i.e., shear-thickening fluids. Here, shear bands are considered as dissipative structures arising from spatial instabilities (Turing patterns) rather than the classical mechanical instability. In the present analysis, a monotonic relation between shear-stress and shear-rate holds. The formation of banded patterns is discussed for shear-thickening fluids with a model that consist of an upper-convected Maxwell-type constitutive equation coupled to an evolution equation for the structure variable, in which both non-local terms of the stress and of the structure variable are included (non-local Bautista-Manero-Puig model). The Turing mechanism is used to predict a critical point for primary instabilities (stable bands), while the amplitude formalism is used to predict secondary instabilities and marginal curves. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.5051768 |