Non-equilibrium x-ray spectroscopy using direct quantum dynamics

Advances in experimental methodology aligned with technological developments, such as 3rd generation light sources, X-ray Free Electron Lasers, and High Harmonic Generation, have led to a paradigm shift in the capability of X-ray spectroscopy to deliver high temporal and spectral resolution on an ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-09, Vol.149 (12), p.124107-124107
Hauptverfasser: Northey, T., Duffield, J., Penfold, T. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in experimental methodology aligned with technological developments, such as 3rd generation light sources, X-ray Free Electron Lasers, and High Harmonic Generation, have led to a paradigm shift in the capability of X-ray spectroscopy to deliver high temporal and spectral resolution on an extremely broad range of samples in a wide array of different environments. Importantly, the complex nature and high information content of this class of techniques mean that detailed theoretical studies are often essential to provide a firm link between the spectroscopic observables and the underlying molecular structure and dynamics. In this paper, we present approaches for simulating dynamical processes in X-ray spectroscopy based upon on-the-fly quantum dynamics with a Gaussian basis set. We show that it is possible to provide a fully quantum description of X-ray spectra without the need of precomputing highly multidimensional potential energy surfaces. It is applied to study two different dynamical situations, namely, the core-hole lifetime dynamics of the water monomer and the dissociation of CF4+ recently studied using pump-probe X-ray spectroscopy. Our results compare favourably to previous experiments, while reducing the computational effort, providing the scope to apply them to larger systems.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5047487