Perspective: Crossing the Widom line in no man’s land: Experiments, simulations, and the location of the liquid-liquid critical point in supercooled water

The origin of liquid water’s anomalous behavior continues to be a subject of interest and debate. One possible explanation is the liquid-liquid critical point hypothesis, which proposes that supercooled water separates into two distinct liquids at low temperatures and high pressures. According to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-10, Vol.149 (14), p.140901-140901
Hauptverfasser: Hestand, Nicholas J., Skinner, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of liquid water’s anomalous behavior continues to be a subject of interest and debate. One possible explanation is the liquid-liquid critical point hypothesis, which proposes that supercooled water separates into two distinct liquids at low temperatures and high pressures. According to this hypothesis, liquid water’s anomalies can be traced back to the critical point associated with this phase separation. If such a critical point actually exists, it is located in a region of the phase diagram known as No Man’s Land (NML), where it is difficult to characterize the liquid using conventional experimental techniques due to rapid crystallization. Recently, however, experimentalists have managed to explore NML near the proposed location of the Widom line (i.e., the Kanno-Angell line), thereby providing valuable information concerning the liquid-liquid critical point hypothesis. In this perspective, we analyze these experimental results, in conjunction with molecular dynamics simulations based on the E3B3 water model and discuss their implications for the validity of the liquid-liquid critical point hypothesis and the possible location of water’s second critical point.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5046687