Characteristics of the SOL turbulence structure in the first experimental campaign on W7-X with limiter configuration
In the first experimental campaign of Wendelstein 7-X (W7-X), a combined probe head mounted on the multi-purpose manipulator has been used to measure the scrape-off layer (SOL) turbulence characteristics. The preliminary experimental results are summarized to illustrate the SOL turbulence properties...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2018-07, Vol.25 (7) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the first experimental campaign of Wendelstein 7-X (W7-X), a combined probe head mounted on the multi-purpose manipulator has been used to measure the scrape-off layer (SOL) turbulence characteristics. The preliminary experimental results are summarized to illustrate the SOL turbulence properties in the limiter configuration on W7-X. In a standard limiter configuration, significant electrostatic fluctuations can be found in the near SOL, and the dominant frequency of fluctuation power is below 100 kHz. The auto-correlation spectrum power law decay factor is α ≈ −1 below 40 kHz and α ≈ –2 between 50 and 200 kHz. A broadband spectrum appears between 240 and 380 kHz with a low spectral power density, but a high cross-correlation coefficient. The statistical characteristics of turbulence are calculated by the two-point cross-correlation technique. A clear poloidal dispersion relation is found in the spectrum S(kθ, f), propagating along the ion diamagnetic drift direction with a group velocity (below 100 kHz) about 0.56 km/s in the near SOL in the laboratory frame. The poloidal correlation length is around 5–10 mm in SOL. The turbulence phase velocity is about 0.5–1 km/s when close to the last closed flux surface, which is comparable with the poloidal E × B drift speed. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.5033353 |