Multiple solutions for a class of fractional (p, q)–Laplacian system in RN
In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (−Δ)psu+V1(x)|u|p−2u=α−1Fu(x,u,v)+λb1(x)|u|m−2u and (−Δ)qsv+V2(x)|v|q−2v=α−1Fv(x,u,v)+μb2(x)|v|k−2v in RN, where (−Δ)ps and (−Δ)qs are the fr...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2018-03, Vol.59 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (−Δ)psu+V1(x)|u|p−2u=α−1Fu(x,u,v)+λb1(x)|u|m−2u and (−Δ)qsv+V2(x)|v|q−2v=α−1Fv(x,u,v)+μb2(x)|v|k−2v in RN, where (−Δ)ps and (−Δ)qs are the fractional p and q-Laplacian operators, respectively, and 0 < s < 1 < q ≤ p, sp < N, p |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5027564 |