Multiple solutions for a class of fractional (p, q)–Laplacian system in RN

In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (−Δ)psu+V1(x)|u|p−2u=α−1Fu(x,u,v)+λb1(x)|u|m−2u and (−Δ)qsv+V2(x)|v|q−2v=α−1Fv(x,u,v)+μb2(x)|v|k−2v in RN, where (−Δ)ps and (−Δ)qs are the fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-03, Vol.59 (3)
Hauptverfasser: Chen, Caisheng, Bao, Jinfeng, Song, Hongxue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (−Δ)psu+V1(x)|u|p−2u=α−1Fu(x,u,v)+λb1(x)|u|m−2u and (−Δ)qsv+V2(x)|v|q−2v=α−1Fv(x,u,v)+μb2(x)|v|k−2v in RN, where (−Δ)ps and (−Δ)qs are the fractional p and q-Laplacian operators, respectively, and 0 < s < 1 < q ≤ p, sp < N, p
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5027564