Spherical harmonics and rigged Hilbert spaces

This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-05, Vol.59 (5)
Hauptverfasser: Celeghini, E., Gadella, M., del Olmo, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of mathematical physics
container_volume 59
creator Celeghini, E.
Gadella, M.
del Olmo, M. A.
description This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.
doi_str_mv 10.1063/1.5026740
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5026740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2069023605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQoDPyDSEwguZzt-GtEFVCkSgzAbF1cp3WVJsFOB_49Qe3MdMM97530EnLLYM5AiUc2l8CVruCMFAyMpVpJc04KAM4pr4y5JFc57wAYM1VVEPoxbEOKHttyi2nfd9HnErt1meJmE9blMrZ1SGOZB_QhX5OLBtscbk5zRr5enj8XS7p6f31bPK2o55aPVEhlFZrKMzulVMC6Qs08-CCZRl17nNaisRIsYi2MZVpxhWCNlV5pIWbk7nh3SP33IeTR7fpD6qaXjoOywIUCOan7o_KpzzmFxg0p7jH9OAburw3H3KmNyT4cbfZxxDH23T_4F8lcXK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069023605</pqid></control><display><type>article</type><title>Spherical harmonics and rigged Hilbert spaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Celeghini, E. ; Gadella, M. ; del Olmo, M. A.</creator><creatorcontrib>Celeghini, E. ; Gadella, M. ; del Olmo, M. A.</creatorcontrib><description>This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5026740</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Functionals ; Hilbert space ; Mathematical analysis ; Operators (mathematics) ; Quantum physics ; Spherical harmonics</subject><ispartof>Journal of mathematical physics, 2018-05, Vol.59 (5)</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</citedby><cites>FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</cites><orcidid>0000-0001-7772-9981 ; 0000-0001-8860-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5026740$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Celeghini, E.</creatorcontrib><creatorcontrib>Gadella, M.</creatorcontrib><creatorcontrib>del Olmo, M. A.</creatorcontrib><title>Spherical harmonics and rigged Hilbert spaces</title><title>Journal of mathematical physics</title><description>This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.</description><subject>Algebra</subject><subject>Functionals</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Quantum physics</subject><subject>Spherical harmonics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQoDPyDSEwguZzt-GtEFVCkSgzAbF1cp3WVJsFOB_49Qe3MdMM97530EnLLYM5AiUc2l8CVruCMFAyMpVpJc04KAM4pr4y5JFc57wAYM1VVEPoxbEOKHttyi2nfd9HnErt1meJmE9blMrZ1SGOZB_QhX5OLBtscbk5zRr5enj8XS7p6f31bPK2o55aPVEhlFZrKMzulVMC6Qs08-CCZRl17nNaisRIsYi2MZVpxhWCNlV5pIWbk7nh3SP33IeTR7fpD6qaXjoOywIUCOan7o_KpzzmFxg0p7jH9OAburw3H3KmNyT4cbfZxxDH23T_4F8lcXK4</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Celeghini, E.</creator><creator>Gadella, M.</creator><creator>del Olmo, M. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7772-9981</orcidid><orcidid>https://orcid.org/0000-0001-8860-990X</orcidid></search><sort><creationdate>201805</creationdate><title>Spherical harmonics and rigged Hilbert spaces</title><author>Celeghini, E. ; Gadella, M. ; del Olmo, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Functionals</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Quantum physics</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celeghini, E.</creatorcontrib><creatorcontrib>Gadella, M.</creatorcontrib><creatorcontrib>del Olmo, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celeghini, E.</au><au>Gadella, M.</au><au>del Olmo, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spherical harmonics and rigged Hilbert spaces</atitle><jtitle>Journal of mathematical physics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>59</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5026740</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7772-9981</orcidid><orcidid>https://orcid.org/0000-0001-8860-990X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2018-05, Vol.59 (5)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5026740
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algebra
Functionals
Hilbert space
Mathematical analysis
Operators (mathematics)
Quantum physics
Spherical harmonics
title Spherical harmonics and rigged Hilbert spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spherical%20harmonics%20and%20rigged%20Hilbert%20spaces&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Celeghini,%20E.&rft.date=2018-05&rft.volume=59&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5026740&rft_dat=%3Cproquest_cross%3E2069023605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069023605&rft_id=info:pmid/&rfr_iscdi=true