Spherical harmonics and rigged Hilbert spaces
This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2018-05, Vol.59 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 59 |
creator | Celeghini, E. Gadella, M. del Olmo, M. A. |
description | This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis. |
doi_str_mv | 10.1063/1.5026740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5026740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2069023605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQoDPyDSEwguZzt-GtEFVCkSgzAbF1cp3WVJsFOB_49Qe3MdMM97530EnLLYM5AiUc2l8CVruCMFAyMpVpJc04KAM4pr4y5JFc57wAYM1VVEPoxbEOKHttyi2nfd9HnErt1meJmE9blMrZ1SGOZB_QhX5OLBtscbk5zRr5enj8XS7p6f31bPK2o55aPVEhlFZrKMzulVMC6Qs08-CCZRl17nNaisRIsYi2MZVpxhWCNlV5pIWbk7nh3SP33IeTR7fpD6qaXjoOywIUCOan7o_KpzzmFxg0p7jH9OAburw3H3KmNyT4cbfZxxDH23T_4F8lcXK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069023605</pqid></control><display><type>article</type><title>Spherical harmonics and rigged Hilbert spaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Celeghini, E. ; Gadella, M. ; del Olmo, M. A.</creator><creatorcontrib>Celeghini, E. ; Gadella, M. ; del Olmo, M. A.</creatorcontrib><description>This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5026740</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Functionals ; Hilbert space ; Mathematical analysis ; Operators (mathematics) ; Quantum physics ; Spherical harmonics</subject><ispartof>Journal of mathematical physics, 2018-05, Vol.59 (5)</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</citedby><cites>FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</cites><orcidid>0000-0001-7772-9981 ; 0000-0001-8860-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5026740$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Celeghini, E.</creatorcontrib><creatorcontrib>Gadella, M.</creatorcontrib><creatorcontrib>del Olmo, M. A.</creatorcontrib><title>Spherical harmonics and rigged Hilbert spaces</title><title>Journal of mathematical physics</title><description>This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.</description><subject>Algebra</subject><subject>Functionals</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Quantum physics</subject><subject>Spherical harmonics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQoDPyDSEwguZzt-GtEFVCkSgzAbF1cp3WVJsFOB_49Qe3MdMM97530EnLLYM5AiUc2l8CVruCMFAyMpVpJc04KAM4pr4y5JFc57wAYM1VVEPoxbEOKHttyi2nfd9HnErt1meJmE9blMrZ1SGOZB_QhX5OLBtscbk5zRr5enj8XS7p6f31bPK2o55aPVEhlFZrKMzulVMC6Qs08-CCZRl17nNaisRIsYi2MZVpxhWCNlV5pIWbk7nh3SP33IeTR7fpD6qaXjoOywIUCOan7o_KpzzmFxg0p7jH9OAburw3H3KmNyT4cbfZxxDH23T_4F8lcXK4</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Celeghini, E.</creator><creator>Gadella, M.</creator><creator>del Olmo, M. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7772-9981</orcidid><orcidid>https://orcid.org/0000-0001-8860-990X</orcidid></search><sort><creationdate>201805</creationdate><title>Spherical harmonics and rigged Hilbert spaces</title><author>Celeghini, E. ; Gadella, M. ; del Olmo, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-35696a84c19ace6eab4a71c0ce517a7bca96a3f9509aab38917626a09895c6733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Functionals</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Quantum physics</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celeghini, E.</creatorcontrib><creatorcontrib>Gadella, M.</creatorcontrib><creatorcontrib>del Olmo, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celeghini, E.</au><au>Gadella, M.</au><au>del Olmo, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spherical harmonics and rigged Hilbert spaces</atitle><jtitle>Journal of mathematical physics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>59</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5026740</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7772-9981</orcidid><orcidid>https://orcid.org/0000-0001-8860-990X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2018-05, Vol.59 (5) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5026740 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Functionals Hilbert space Mathematical analysis Operators (mathematics) Quantum physics Spherical harmonics |
title | Spherical harmonics and rigged Hilbert spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spherical%20harmonics%20and%20rigged%20Hilbert%20spaces&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Celeghini,%20E.&rft.date=2018-05&rft.volume=59&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5026740&rft_dat=%3Cproquest_cross%3E2069023605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069023605&rft_id=info:pmid/&rfr_iscdi=true |