Spherical harmonics and rigged Hilbert spaces
This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2018-05, Vol.59 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5026740 |