Nanostructured SnSe: Synthesis, doping, and thermoelectric properties
IV-VI monochalcogenide SnSe or SnS has recently been proposed as a promising two-dimensional (2D) material for valleytronics and thermoelectrics. We report the synthesis of SnSe nanoflakes and nanostructured thin films with chemical vapor deposition method and their thermoelectric properties. As gro...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-03, Vol.123 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IV-VI monochalcogenide SnSe or SnS has recently been proposed as a promising two-dimensional (2D) material for valleytronics and thermoelectrics. We report the synthesis of SnSe nanoflakes and nanostructured thin films with chemical vapor deposition method and their thermoelectric properties. As grown SnSe nanostructures are found to be intrinsically p-type and the single SnSe nanoflake field effect transistor was fabricated. By Ag doping, the power factor of SnSe nanostructured thin films can be improved by up to one order of magnitude compared to the “intrinsic” as grown materials. Our work provides an initial step in the pursuit of IV-VI monochalcogenides as novel 2D semiconductors for electronics and thermoelectrics. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5018860 |