PT-symmetric eigenvalues for homogeneous potentials

We consider one-dimensional Schrödinger equations with potential x2M(ix)ε, where M ≥ 1 is an integer and ε is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ε changes, the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-05, Vol.59 (5)
Hauptverfasser: Eremenko, Alexandre, Gabrielov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of mathematical physics
container_volume 59
creator Eremenko, Alexandre
Gabrielov, Andrei
description We consider one-dimensional Schrödinger equations with potential x2M(ix)ε, where M ≥ 1 is an integer and ε is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ε changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.
doi_str_mv 10.1063/1.5016390
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5016390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2069025119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1ed6a112f32a5388467af4374e693c67bd950b2dc9ade4d537081b08e02a1daf3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCtbVg_-g4Emh60yS5uMoi1-woIf1HNI21S7bpiapsP_eyu7Z0wvDw8zwEnKNsEQQ7B6XJaBgGk5IhqB0IUWpTkkGQGlBuVLn5CLGLQCi4jwj7H1TxH3fuxS6Onfdpxt-7G5yMW99yL987-eJ81PMR5_ckDq7i5fkrJ3DXR1zQT6eHjerl2L99vy6elgXNaMyFegaYRFpy6gtmVJcSNtyJrkTmtVCVo0uoaJNrW3jeFMyCQorUA6oxca2bEFuDnvH4L_nl5LZ-ikM80lDQWigJaKe1e1B1cHHGFxrxtD1NuwNgvnrxKA5djLbu4ONdZds6vzwD_4FNXtf2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069025119</pqid></control><display><type>article</type><title>PT-symmetric eigenvalues for homogeneous potentials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Eremenko, Alexandre ; Gabrielov, Andrei</creator><creatorcontrib>Eremenko, Alexandre ; Gabrielov, Andrei</creatorcontrib><description>We consider one-dimensional Schrödinger equations with potential x2M(ix)ε, where M ≥ 1 is an integer and ε is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ε changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5016390</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boundary conditions ; Eigenvalues ; Numerical analysis ; Schrodinger equation ; Symmetry</subject><ispartof>Journal of mathematical physics, 2018-05, Vol.59 (5)</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1ed6a112f32a5388467af4374e693c67bd950b2dc9ade4d537081b08e02a1daf3</citedby><cites>FETCH-LOGICAL-c327t-1ed6a112f32a5388467af4374e693c67bd950b2dc9ade4d537081b08e02a1daf3</cites><orcidid>0000-0002-3752-4559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5016390$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4502,27915,27916,76145</link.rule.ids></links><search><creatorcontrib>Eremenko, Alexandre</creatorcontrib><creatorcontrib>Gabrielov, Andrei</creatorcontrib><title>PT-symmetric eigenvalues for homogeneous potentials</title><title>Journal of mathematical physics</title><description>We consider one-dimensional Schrödinger equations with potential x2M(ix)ε, where M ≥ 1 is an integer and ε is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ε changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.</description><subject>Boundary conditions</subject><subject>Eigenvalues</subject><subject>Numerical analysis</subject><subject>Schrodinger equation</subject><subject>Symmetry</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCtbVg_-g4Emh60yS5uMoi1-woIf1HNI21S7bpiapsP_eyu7Z0wvDw8zwEnKNsEQQ7B6XJaBgGk5IhqB0IUWpTkkGQGlBuVLn5CLGLQCi4jwj7H1TxH3fuxS6Onfdpxt-7G5yMW99yL987-eJ81PMR5_ckDq7i5fkrJ3DXR1zQT6eHjerl2L99vy6elgXNaMyFegaYRFpy6gtmVJcSNtyJrkTmtVCVo0uoaJNrW3jeFMyCQorUA6oxca2bEFuDnvH4L_nl5LZ-ikM80lDQWigJaKe1e1B1cHHGFxrxtD1NuwNgvnrxKA5djLbu4ONdZds6vzwD_4FNXtf2Q</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Eremenko, Alexandre</creator><creator>Gabrielov, Andrei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3752-4559</orcidid></search><sort><creationdate>201805</creationdate><title>PT-symmetric eigenvalues for homogeneous potentials</title><author>Eremenko, Alexandre ; Gabrielov, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1ed6a112f32a5388467af4374e693c67bd950b2dc9ade4d537081b08e02a1daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Eigenvalues</topic><topic>Numerical analysis</topic><topic>Schrodinger equation</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eremenko, Alexandre</creatorcontrib><creatorcontrib>Gabrielov, Andrei</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eremenko, Alexandre</au><au>Gabrielov, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PT-symmetric eigenvalues for homogeneous potentials</atitle><jtitle>Journal of mathematical physics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>59</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider one-dimensional Schrödinger equations with potential x2M(ix)ε, where M ≥ 1 is an integer and ε is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ε changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016390</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3752-4559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2018-05, Vol.59 (5)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5016390
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boundary conditions
Eigenvalues
Numerical analysis
Schrodinger equation
Symmetry
title PT-symmetric eigenvalues for homogeneous potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PT-symmetric%20eigenvalues%20for%20homogeneous%20potentials&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Eremenko,%20Alexandre&rft.date=2018-05&rft.volume=59&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5016390&rft_dat=%3Cproquest_cross%3E2069025119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069025119&rft_id=info:pmid/&rfr_iscdi=true