PT-symmetric eigenvalues for homogeneous potentials

We consider one-dimensional Schrödinger equations with potential x2M(ix)ε, where M ≥ 1 is an integer and ε is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ε changes, the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-05, Vol.59 (5)
Hauptverfasser: Eremenko, Alexandre, Gabrielov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider one-dimensional Schrödinger equations with potential x2M(ix)ε, where M ≥ 1 is an integer and ε is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ε changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5016390