First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11
Systematic first-principles calculations were performed to study the lattice dynamics of Yb14MnSb11 and hence to obtain a wide range of its thermodynamic properties at high temperatures. The calculated results were analyzed in terms of the lattice contribution and the electronic contribution, togeth...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-01, Vol.123 (4) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systematic first-principles calculations were performed to study the lattice dynamics of Yb14MnSb11 and hence to obtain a wide range of its thermodynamic properties at high temperatures. The calculated results were analyzed in terms of the lattice contribution and the electronic contribution, together with a comparison with a collection of experimental thermochemical data. At 0 K, the electronic density of states showed the typical feature of a p-type semiconductor—a small amount of unoccupied electronic states exclusively made of the major spin by a range of ∼0.6 eV above the Fermi energy. It showed that the Mn atom had a ferromagnetic spin moment of ∼4 μB. As a semiconductor, it was found that the electronic contribution to the heat capacity was substantial, with an electronic heat capacity coefficient of ∼0.0006 J/mole-atom/K2. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5013601 |