High operating temperature nBn detector with monolithically integrated microlens
We demonstrate an InAsSb nBn detector monolithically integrated with a microlens fabricated on the back side of the detector. The increase in the optical collection area of the detector resulted in a five-fold enhancement of the responsivity to Rp = 5.5 A/W. The responsivity increases further to Rp ...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-01, Vol.112 (4) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate an InAsSb nBn detector monolithically integrated with a microlens fabricated on the back side of the detector. The increase in the optical collection area of the detector resulted in a five-fold enhancement of the responsivity to Rp = 5.5 A/W. The responsivity increases further to Rp = 8.5 A/W with an antireflection coating. These 4.5 μm cut-off wavelength antireflection coated detectors with microlenses exhibited a detectivity of D* (λ) = 2.7 × 1010 cmHz0.5/W at T = 250 K, which can be reached easily with a single-stage thermoelectric cooler or with a passive radiator in the space environment. This represents a 25 K increase in the operating temperature of these devices compared to the uncoated detectors without an integrated microlens. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5011348 |