Divacancy-tin related defects in irradiated germanium

A new absorption spectrum has been detected in the region of 770–805 cm−1 following the annealing of low temperature irradiated Sn-doped Ge. The spectrum develops simultaneously with the disappearance of the V2-related absorption band. The new spectra arise both in p- (doping with gallium) and n- (d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-04, Vol.123 (16)
Hauptverfasser: Khirunenko, L. I., Sosnin, M. G., Duvanskii, A. V., Abrosimov, N. V., Riemann, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new absorption spectrum has been detected in the region of 770–805 cm−1 following the annealing of low temperature irradiated Sn-doped Ge. The spectrum develops simultaneously with the disappearance of the V2-related absorption band. The new spectra arise both in p- (doping with gallium) and n- (doping with antimony) type samples and are completely identical to the absorption spectrum of the corresponding dopants. The studies have shown that the defects responsible for the registered spectra have hydrogen-like excited states similar to those observed for hydrogen-like group-III acceptors and group-V donors in Ge. The defects are identified as SnV2Ga and SnV2Sb. The formation of the revealed complexes consists of two stages. During the first stage, the defects are created as a result of the direct interaction of SnV2 diffusing upon the annealing with atoms Ga or Sb. The second stage arises, apparently, due to the participation of SnV2 in the formation of intermediate defects that are optically inactive and transform into the revealed defects at annealing temperatures Tann. > 243 K.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5010422