The depolarization performances of 0.97PbZrO3–0.03Ba(Mg1/3Nb2/3)O3 ceramics under hydrostatic pressure

Several 0.97PbZrO3–0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ–0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-02, Vol.112 (6)
Hauptverfasser: Su, Rigu, Nie, Hengchang, Liu, Zhen, Peng, Ping, Cao, Fei, Dong, Xianlin, Wang, Genshui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several 0.97PbZrO3–0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ–0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a main rhombohedral symmetry crystal structure is present in the bulk and that it sits alongside a trace quantity of an orthorhombic antiferroelectric phase that results from the effect of grinding on the surface. The remanent polarization (Pr) of the 0.97PZ–0.03BMN reached 32.4 μC/cm2 at 4.5 kV/mm and ambient pressure. In an in situ pressure-induced current measurement, more than 91% of the retained Pr of the pre-poled sample was released when the pressure was increased from 194 MPa to 238 MPa. That this pressure-driven depolarization should be attributed to the pressure-induced ferroelectric–antiferroelectric phase transition is supported by the emergence of double P–E loops at high hydrostatic pressures. Moreover, the 0.97PZ-0.03BMN ceramics exhibit no temperature-induced phase transitions and little related polarization loss up to 125 °C, which suggests that Pr has excellent thermal stability. The sharp depolarization behavior at low pressures and excellent temperature stability reveal that our 0.97PZ–0.03BMN ceramics exhibit superior performances in mechanical–electrical energy conversion applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5008819