Investigation of the effects of misfit strain on barium strontium titanate thin films deposited on base metal substrates by a modified phenomenological model

The Landau-Devonshire phenomenological model, which has been utilized to investigate epitaxial barium strontium titanate (BST) thin films, was modified to investigate the effects of misfit strain on the dielectric properties of polycrystalline BST thin films deposited on base metal substrates. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-10, Vol.122 (14)
Hauptverfasser: Dong, Hanting, Li, Hongfang, Chen, Jianguo, Jin, Dengren, Cheng, Jinrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Landau-Devonshire phenomenological model, which has been utilized to investigate epitaxial barium strontium titanate (BST) thin films, was modified to investigate the effects of misfit strain on the dielectric properties of polycrystalline BST thin films deposited on base metal substrates. The modification considers the relaxation of lattice misfit stress resulting from the formation of in-plane misfit dislocations. The modified lattice misfit strain was calculated by referring to the ferroelectric critical grain size. Moreover, the misfit strain and dielectric properties of BST thin films with different structures and substrates were investigated by the models. It was found that the measured dielectric constant and tunability of BST thin films on different metal substrates overall agreed with the computed data. In addition, the good agreement was also observed for sandwich-like structural BST thin films deposited on LNO buffered stainless steel plates. Our results indicated that the modified L-D models might be utilized to predict dielectric properties of polycrystalline BST thin films for varied substrates and multilayer structures.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5002636