Electric-field-induced lattice distortion in epitaxial BiFeO3 thin films as determined by in situ time-resolved x-ray diffraction
Time-resolved X-ray diffraction (XRD) with synchrotron radiation while applying continuous voltage pulses was employed to investigate the electric-field-induced lattice distortion of an epitaxial BiFeO3 (BFO) thin film in a Pt/BFO (1 μm)/SrRuO3 (50 nm)/vicinal SrTiO3 (001) structure. XRD-reciprocal...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-08, Vol.111 (8) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-resolved X-ray diffraction (XRD) with synchrotron radiation while applying continuous voltage pulses was employed to investigate the electric-field-induced lattice distortion of an epitaxial BiFeO3 (BFO) thin film in a Pt/BFO (1 μm)/SrRuO3 (50 nm)/vicinal SrTiO3 (001) structure. XRD-reciprocal space maps based on the BFO 003, 114, and 1
1
¯
4 diffraction spots with and without the application of +15 V (150 kV/cm) to the capacitor demonstrated simultaneous electric-field-induced lattice distortion and crystallographic rotation in the BFO thin film. In response to the application of +15 V, the BFO lattice elongated by 0.08% along the [001]BFO direction and compressed by 0.05% along the [110]BFO direction. In addition, the BFO crystals were rotated by 0.01° along the [
1
¯
1
¯
0]STO direction as a result of electric-field-induced lattice distortion under epitaxial strain along the vertical direction at the step edges of the vicinal substrate. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5000495 |