Higher order dynamic mode decomposition to identify and extrapolate flow patterns

This article shows the capability of using a higher order dynamic mode decomposition (HODMD) algorithm both to identify flow patterns and to extrapolate a transient solution to the attractor region. Numerical simulations are carried out for the three-dimensional flow around a circular cylinder, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2017-08, Vol.29 (8)
Hauptverfasser: Le Clainche, Soledad, Vega, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article shows the capability of using a higher order dynamic mode decomposition (HODMD) algorithm both to identify flow patterns and to extrapolate a transient solution to the attractor region. Numerical simulations are carried out for the three-dimensional flow around a circular cylinder, and both standard dynamic mode decomposition (DMD) and higher order DMD are applied to the non-converged solution. The good performance of HODMD is proved, showing that this method guesses the converged flow patterns from numerical simulations in the transitional region. The solution obtained can be extrapolated to the attractor region. This fact sheds light on the capability of finding real flow patterns in complex flows and, simultaneously, reducing the computational cost of the numerical simulations or the required quantity of data collected in experiments.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.4997206