Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems
Enhancing the piezoelectric activity of AlN by partially substituting Al with Sc to form Al1–xScxN is a promising approach to improve the performance of piezoelectric micro-electromechanical systems. Here, we present evidence of an instability in the morphology of Al1–xScxN, which originates at, or...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2017-07, Vol.122 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enhancing the piezoelectric activity of AlN by partially substituting Al with Sc to form Al1–xScxN is a promising approach to improve the performance of piezoelectric micro-electromechanical systems. Here, we present evidence of an instability in the morphology of Al1–xScxN, which originates at, or close to, the substrate/Al1–xScxN interface and becomes more pronounced as the Sc content is increased. Based on Transmission electron microscopy, piezoresponse force microscopy, X-ray diffraction, and SEM analysis, it is identified to be the incipient formation of (100) oriented grains. Approaches to successfully reestablish exclusive c-axis orientation up to x = 0.43 are revealed, with electrode pre-treatment and cathode-substrate distance found to exert significant influence. This allows us to present first measurements of the transversal thin film piezoelectric coefficient e31,f and dielectric loss tangent
tan
δ
beyond x = 0.3. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4993908 |