Instability of a binary liquid film flowing down a slippery heated plate
In this paper, we study the stability of a binary liquid film flowing down a heated slippery inclined surface. It is assumed that the heating induces concentration differences in the liquid mixture (Soret effect), which together with the differences in temperature affects the surface tension. A math...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2017-09, Vol.29 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the stability of a binary liquid film flowing down a heated slippery inclined surface. It is assumed that the heating induces concentration differences in the liquid mixture (Soret effect), which together with the differences in temperature affects the surface tension. A mathematical model is constructed by coupling the Navier-Stokes equations governing the flow with equations for the concentration and temperature. A Navier slip condition is applied at the liquid-solid interface. We carry out a linear stability analysis in order to obtain the critical conditions for the onset of instability. We use a Chebyshev spectral collocation method to obtain numerical solutions to the resulting Orr-Sommerfeld-type equations. We also obtain an asymptotic solution that yields an expression for the state of neutral stability of long perturbations as a function of the parameters controlling the problem. A weighted residual approximation is employed to derive a reduced model that is used to analyse the nonlinear effects. Good agreement between the linear stability analysis and nonlinear simulations provided by the weighted residual model is found. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.4989558 |