Curvature in Hamiltonian mechanics and the Einstein-Maxwell-dilaton action

Riemannian geometry is a particular case of Hamiltonian mechanics: the orbits of the Hamiltonian H = 1 2 g i j p i p j are the geodesics. Given a symplectic manifold ( Γ , ω ) , a Hamiltonian H : Γ → ℝ , and a Lagrangian sub-manifold M ⊂ Γ , we find a generalization of the notion of curvature. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2017-05, Vol.58 (5)
1. Verfasser: Rajeev, S. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Riemannian geometry is a particular case of Hamiltonian mechanics: the orbits of the Hamiltonian H = 1 2 g i j p i p j are the geodesics. Given a symplectic manifold ( Γ , ω ) , a Hamiltonian H : Γ → ℝ , and a Lagrangian sub-manifold M ⊂ Γ , we find a generalization of the notion of curvature. The particular case H = 1 2 g i j [ p i − A i ] [ p j − A j ] + ϕ of a particle moving in gravitational, electromagnetic, and scalar fields is studied in more detail. The integral of the generalized Ricci tensor with respect to the Boltzmann weight reduces to the action principle ∫ [ R + 1 4 F i k F j l g k l g i j − g i j ∂ i ϕ ∂ j ϕ ] e − ϕ g d n q for the scalar, vector and tensor fields.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4983665