Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability

Giant third-order nonlinear absorption and refraction of electrochemical graphene oxide (EGO) film were investigated in the femtosecond regime using the single beam Z-scan technique. The excellent chemical stability of the EGO film under high-power illumination up to 400 mJ/cm2 is demonstrated, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-11, Vol.109 (22)
Hauptverfasser: Ren, Jun, Zheng, Xiaorui, Tian, Zhiming, Li, Dan, Wang, Pu, Jia, Baohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Giant third-order nonlinear absorption and refraction of electrochemical graphene oxide (EGO) film were investigated in the femtosecond regime using the single beam Z-scan technique. The excellent chemical stability of the EGO film under high-power illumination up to 400 mJ/cm2 is demonstrated, which can be attributed to the low oxidation degree revealed by the optical and Raman spectroscopies. High and broadband linear transmission over 70% has been observed from the visible to the infrared range. The low-loss EGO film with giant third-order nonlinearity, excellent chemical stability, large-scale preparation and flexible integration has a great potential for high-power nonlinear optical applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4969068