Improvements to an ion orbit loss calculation in the tokamak edge

An existing model of collisionless particle, momentum, and energy ion orbit loss from the edge region of a diverted tokamak plasma has been extended. The extended ion orbit loss calculation now treats losses of both thermal ions and fast neutral beam injection ions and includes realistic flux surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2016-12, Vol.23 (12)
Hauptverfasser: Wilks, T. M., Stacey, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An existing model of collisionless particle, momentum, and energy ion orbit loss from the edge region of a diverted tokamak plasma has been extended. The extended ion orbit loss calculation now treats losses of both thermal ions and fast neutral beam injection ions and includes realistic flux surface and magnetic field representations, particles returning to the plasma from the scrape off layer, and treatment of x-transport and x-loss. More realistic flux surface geometry allows the intrinsic rotation calculation to predict a peaking in the profile closer to the separatrix, which is consistent with experiment; and particle tracking calculations reveal a new mechanism of “x-transport pumping,” which predicts larger ion losses when coupling conventional ion orbit loss and x-loss mechanisms, though still dominated by conventional ion orbit loss. Sensitivity to these ion orbit loss model enhancements is illustrated by fluid predictions of neoclassical rotation velocities and radial electric field profiles, with and without the enhancements.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4968219