Optimized parameter selection reveals trends in Markov state models for protein folding

As molecular dynamics simulations access increasingly longer time scales, complementary advances in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful framework for this analysis by describing a system’s states and the transitions between them. A recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-11, Vol.145 (19), p.194103-194103
Hauptverfasser: Husic, Brooke E., McGibbon, Robert T., Sultan, Mohammad M., Pande, Vijay S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As molecular dynamics simulations access increasingly longer time scales, complementary advances in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful framework for this analysis by describing a system’s states and the transitions between them. A recently established variational theorem for Markov state models now enables modelers to systematically determine the best way to describe a system’s dynamics. In the context of the variational theorem, we analyze ultra-long folding simulations for a canonical set of twelve proteins [K. Lindorff-Larsen et al., Science 334, 517 (2011)] by creating and evaluating many types of Markov state models. We present a set of guidelines for constructing Markov state models of protein folding; namely, we recommend the use of cross-validation and a kinetically motivated dimensionality reduction step for improved descriptions of folding dynamics. We also warn that precise kinetics predictions rely on the features chosen to describe the system and pose the description of kinetic uncertainty across ensembles of models as an open issue.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4967809