Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption

Using the concepts of slow sound and critical coupling, an ultra-thin acoustic metamaterial panel for perfect and quasi-omnidirectional absorption is theoretically and experimentally conceived in this work. The system is made of a rigid panel with a periodic distribution of thin closed slits, the up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-09, Vol.109 (12)
Hauptverfasser: Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., Groby, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the concepts of slow sound and critical coupling, an ultra-thin acoustic metamaterial panel for perfect and quasi-omnidirectional absorption is theoretically and experimentally conceived in this work. The system is made of a rigid panel with a periodic distribution of thin closed slits, the upper wall of which is loaded by Helmholtz Resonators (HRs). The presence of resonators produces a slow sound propagation shifting the resonance frequency of the slit to the deep sub-wavelength regime ( λ / 88 ). By controlling the geometry of the slit and the HRs, the intrinsic visco-thermal losses can be tuned in order to exactly compensate the energy leakage of the system and fulfill the critical coupling condition to create the perfect absorption of sound in a large range of incidence angles due to the deep subwavelength behavior.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4962328