Efficient and versatile graphene-based multilayers for EM field absorption
We thoroughly investigate the possibility to absorb most (i.e., up to more than 90%) of the incident electro-magnetic radiations in thin multilayered PMMA/graphene structures, thus proposing the technical realization of a device with an operational frequency range in the millimeter-wave domain, i.e....
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-08, Vol.109 (9) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We thoroughly investigate the possibility to absorb most (i.e., up to more than 90%) of the incident electro-magnetic radiations in thin multilayered PMMA/graphene structures, thus proposing the technical realization of a device with an operational frequency range in the millimeter-wave domain, i.e., 30 GHz–300 GHz. Our simulations demonstrate the concrete possibility to enhance the field absorption by means of a selective removal and proper micro-pattering within the graphene material, enabling a complete and efficient control of the graphene sheet conductance. This method is applied to design and engineer a class of devices, endowed with a wideband operation capability, showing almost no fluctuations throughout the whole range of mm-wave frequencies. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4962148 |