Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?

The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature T P. With...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-06, Vol.108 (25)
Hauptverfasser: Qiu, Xunlin, Wirges, Werner, Gerhard, Reimund
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature T P. With increasing T P, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4954263