Identification of the zinc-oxygen divacancy in ZnO crystals

An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-04, Vol.119 (14)
Hauptverfasser: Holston, M. S., Golden, E. M., Kananen, B. E., McClory, J. W., Giles, N. C., Halliburton, L. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral nonparamagnetic complexes consisting of adjacent zinc and oxygen vacancies are formed during the irradiation. Subsequent illumination below ∼150 K with 442 nm laser light converts these ( V Z n 2 −  −  V O 2 + )0 defects to their EPR-active state ( V Z n −  −  V O 2 + )+ as electrons are transferred to donors. The resulting photoinduced S = 1/2 spectrum of the divacancy is holelike and has a well-resolved angular dependence from which a complete g matrix is obtained. Principal values of the g matrix are 2.00796, 2.00480, and 2.00244. The unpaired spin resides primarily on one of the three remaining oxygen ions immediately adjacent to the zinc vacancy, thus making the electronic structure of the ( V Z n −  −  V O 2 + )+ ground state similar to the isolated singly ionized axial zinc vacancy. The neutral ( V Z n 2 −  −  V O 2 + )0 divacancies dissociate when the ZnO crystals are heated above 250 °C. After heating above this temperature, the divacancy EPR signal cannot be regenerated at low temperature with light.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4945703