Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-01, Vol.119 (4)
Hauptverfasser: Ummethala, Raghunandan, Wenger, Daniela, Tedde, Sandro F., Täschner, Christine, Leonhardt, Albrecht, Büchner, Bernd, Eckert, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4940418