Spin wave spectra and spatially modulated structures in BiFeO3
The spin wave spectra of antiferromagnetic BiFeO3-type multiferronics are analyzed theoretically. The presence of a spatially modulated cycloidal antiferromagnetic structure leads to a countable number of frequency branches of two oscillatory modes (Goldstone and activation) for spin waves propagati...
Gespeichert in:
Veröffentlicht in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2014-01, Vol.40 (1), p.58-64 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spin wave spectra of antiferromagnetic BiFeO3-type multiferronics are analyzed theoretically. The presence of a spatially modulated cycloidal antiferromagnetic structure leads to a countable number of frequency branches of two oscillatory modes (Goldstone and activation) for spin waves propagating along a cycloid. When there is no magnetic field and anisotropy, the magnon spectrum is characterized by the absence of frequency gaps. The spectral features of the spin oscillations with changing anisotropy and application of a magnetic field are identified and the limits on the existence of an antiferromagnetic cycloid are established up to its transformation into a conical structure. In the transverse direction the spin oscillations have a mixed character which indicates that the cycloid is stable with respect to bending throughout its domain of existence. |
---|---|
ISSN: | 1063-777X 1090-6517 |
DOI: | 10.1063/1.4862464 |