Analysis of diamond surface channel field-effect transistors with AlN passivation layers
Diamond surface channel field effect transistors were passivated with thin AlN layers grown by metal-organic chemical vapor deposition in order to improve the chemical stability of the surface-near p-type channel. Electrical characterization showed that the surface-near conductivity in the diamond i...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-09, Vol.114 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diamond surface channel field effect transistors were passivated with thin AlN layers grown by metal-organic chemical vapor deposition in order to improve the chemical stability of the surface-near p-type channel. Electrical characterization showed that the surface-near conductivity in the diamond is preserved during AlN overgrowth if the process temperature does not exceed 800 °C. However, the sheet carrier density is decreased by a factor of about 5 compared to the unpassivated hydrogen-terminated surface. A combination of TEM and XPS analysis showed that this effect is not induced by a partial modification of the surface termination or by a polarization of the AlN passivation. The preserved, but reduced surface-near conductivity in the diamond can however be explained by a hydrogen double bond between the diamond and the AlN film. Field-effect transistor structures fabricated on the passivated diamond substrates showed stable operation up drain-source voltages to −70 V and might therefore be promising candidates for future high-voltage applications. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4819453 |