Analysis of diamond surface channel field-effect transistors with AlN passivation layers

Diamond surface channel field effect transistors were passivated with thin AlN layers grown by metal-organic chemical vapor deposition in order to improve the chemical stability of the surface-near p-type channel. Electrical characterization showed that the surface-near conductivity in the diamond i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-09, Vol.114 (11)
Hauptverfasser: Pietzka, C., Scharpf, J., Fikry, M., Heinz, D., Forghani, K., Meisch, T., Diemant, Th, Behm, R. J., Bernhard, J., Biskupek, J., Kaiser, U., Scholz, F., Kohn, E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diamond surface channel field effect transistors were passivated with thin AlN layers grown by metal-organic chemical vapor deposition in order to improve the chemical stability of the surface-near p-type channel. Electrical characterization showed that the surface-near conductivity in the diamond is preserved during AlN overgrowth if the process temperature does not exceed 800 °C. However, the sheet carrier density is decreased by a factor of about 5 compared to the unpassivated hydrogen-terminated surface. A combination of TEM and XPS analysis showed that this effect is not induced by a partial modification of the surface termination or by a polarization of the AlN passivation. The preserved, but reduced surface-near conductivity in the diamond can however be explained by a hydrogen double bond between the diamond and the AlN film. Field-effect transistor structures fabricated on the passivated diamond substrates showed stable operation up drain-source voltages to −70 V and might therefore be promising candidates for future high-voltage applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4819453