Threshold voltage control by gate oxide thickness in fluorinated GaN metal-oxide-semiconductor high-electron-mobility transistors
This paper demonstrates the compensation of the intrinsic positive charges in Al2O3 gate dielectric by fluorine ions in GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs). Negatively-charged fluorine ions diffused into the oxide from the AlGaN barrier during the 250 °C atom...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-07, Vol.103 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper demonstrates the compensation of the intrinsic positive charges in Al2O3 gate dielectric by fluorine ions in GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs). Negatively-charged fluorine ions diffused into the oxide from the AlGaN barrier during the 250 °C atomic layer deposition compensate the intrinsic positive charge present in the Al2O3. This compensation is key to control the threshold voltage (Vth) of enhancement-mode (E-mode) transistors. A comprehensive analytical model for the Vth of fluorinated MOS-HEMTs was established and verified by experimental data. This model allows the calculation of the different charge components in order to optimize the transistor structure for E-mode operation. Using the proposed charge compensation, the Vth increases with gate dielectric thickness, exceeding 3.5 V for gate dielectrics 25 nm thick. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4815923 |