Strain-induced defects as nonradiative recombination centers in green-emitting GaInN/GaN quantum well structures

The origin of the green gap for GaInN/GaN quantum wells is investigated via temperature-dependent time-resolved photoluminescence spectroscopy. A strong correlation between nonradiative lifetimes and total strain energy is observed, although the wells are almost fully strained. We discuss this obser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-07, Vol.103 (2)
Hauptverfasser: Langer, Torsten, Jönen, Holger, Kruse, Andreas, Bremers, Heiko, Rossow, Uwe, Hangleiter, Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of the green gap for GaInN/GaN quantum wells is investigated via temperature-dependent time-resolved photoluminescence spectroscopy. A strong correlation between nonradiative lifetimes and total strain energy is observed, although the wells are almost fully strained. We discuss this observation in terms of nonradiative recombination at defects which contribute to a beginning partial relaxation. The formation energy of a defect is likely reduced by the amount of its released strain energy. We therefore expect an exponential dependence of the defect density on this released strain energy. Our measured nonradiative lifetimes are consistent with a cumulative strain driven generation of defects.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4813446