Mixed quantum-classical surface hopping dynamics

An algorithm is presented for the exact solution of the evolution of the density matrix of a mixed quantum-classical system in terms of an ensemble of surface hopping trajectories. The system comprises a quantum subsystem coupled to a classical bath whose evolution is governed by a mixed quantum-cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2000-04, Vol.112 (15), p.6543-6553
Hauptverfasser: Nielsen, Steve, Kapral, Raymond, Ciccotti, Giovanni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm is presented for the exact solution of the evolution of the density matrix of a mixed quantum-classical system in terms of an ensemble of surface hopping trajectories. The system comprises a quantum subsystem coupled to a classical bath whose evolution is governed by a mixed quantum-classical Liouville equation. The integral solution of the evolution equation is formulated in terms of a concatenation of classical evolution segments for the bath phase space coordinates separated by operators that change the quantum state and bath momenta. A hybrid Molecular Dynamics–Monte Carlo scheme which follows a branching tree of trajectories arising from the action of momentum derivatives is constructed to solve the integral equation. We also consider a simpler scheme where changes in the bath momenta are approximated by momentum jumps. These schemes are illustrated by considering the computation of the evolution of the density matrix for a two-level system coupled to a low dimensional classical bath.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.481225