Electrically controlled reversible and hysteretic magnetic domain evolution in nickel film/Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (011) heterostructure

We report direct Lorentz microscopy observations of electrically induced magnetic domain motion in a nickel film/Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT (011)) heterostructure. The 0.5 mm-thick PMN-PT substrate contains a 10 μm-wide, 60 nm-thick Ni/Pt electron-permeable observation region. Stress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-06, Vol.102 (24)
Hauptverfasser: Hockel, J. L., Pollard, S. D., Wetzlar, K. P., Wu, T., Zhu, Y., Carman, G. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report direct Lorentz microscopy observations of electrically induced magnetic domain motion in a nickel film/Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT (011)) heterostructure. The 0.5 mm-thick PMN-PT substrate contains a 10 μm-wide, 60 nm-thick Ni/Pt electron-permeable observation region. Stress from the substrate creates magnetoelastic anisotropy of up to 4 kJ m−3 in the nickel film resulting in reversible magnetization rotation as well as non-reversible domain wall jumps (i.e., Barkhausen jumps). The observed magnetization of the film is directly related to the local strain gradient as computed by the finite element method, providing strong evidence of the effectiveness of the strain-mediated magnetoelectric approach for device applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4811249