Nucleation-related defect-free GaP/Si(100) heteroepitaxy via metal-organic chemical vapor deposition

GaP/Si heterostructures were grown by metal-organic chemical vapor deposition in which the formation of all heterovalent nucleation-related defects (antiphase domains, stacking faults, and microtwins) were fully and simultaneously suppressed, as observed via transmission electron microscopy (TEM). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-04, Vol.102 (14)
Hauptverfasser: Grassman, T. J., Carlin, J. A., Galiana, B., Yang, L.-M., Yang, F., Mills, M. J., Ringel, S. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GaP/Si heterostructures were grown by metal-organic chemical vapor deposition in which the formation of all heterovalent nucleation-related defects (antiphase domains, stacking faults, and microtwins) were fully and simultaneously suppressed, as observed via transmission electron microscopy (TEM). This was achieved through a combination of intentional Si(100) substrate misorientation, Si homoepitaxy prior to GaP growth, and GaP nucleation by Ga-initiated atomic layer epitaxy. Unintentional (311) Si surface faceting due to biatomic step-bunching during Si homoepitaxy was observed by atomic force microscopy and TEM and was found to also yield defect-free GaP/Si interfaces.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4801498