Persistent photoconductivity effects in printed n-channel organic transistors

Persistent photoconductivity of top-gate n-type organic transistors is investigated. The irradiation of green light leads to a negative shift in transistor threshold voltage and an increase in sub-threshold current. These light-induced effects are enhanced when the gate is negatively biased during t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-03, Vol.113 (9)
Hauptverfasser: Nga Ng, Tse, Fujieda, Ichiro, Street, Robert A., Veres, Janos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Persistent photoconductivity of top-gate n-type organic transistors is investigated. The irradiation of green light leads to a negative shift in transistor threshold voltage and an increase in sub-threshold current. These light-induced effects are enhanced when the gate is negatively biased during the light irradiation, and the recovery process is faster at 60 °C than at 25 °C. After storage in dark, full recovery is obtained for a transistor printed with a neat semiconductor, whereas for the device printed with a solution of the same semiconductor mixed with an insulator, only partial recovery is observed after four days at room temperature. Other stress conditions (irradiation with a positive gate bias, irradiation without bias, and bias under dark) do not change the threshold voltage or the sub-threshold current significantly. We attribute this photo phenomenon to holes trapped and released at the dielectric/semiconductor interface and a smaller number of positive fixed charges generated in the bulk of the semiconductor layer.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4794097