Macroscale refrigeration by nanoscale electron transport
We demonstrate a general-purpose solid-state refrigerator for sub-Kelvin temperatures based on the tunneling of hot electrons through normal-metal/insulator/superconductor (NIS) junctions. Previous devices using this cooling principle fell short of general-purpose refrigerators since they could not...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-02, Vol.102 (8) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate a general-purpose solid-state refrigerator for sub-Kelvin temperatures based on the tunneling of hot electrons through normal-metal/insulator/superconductor (NIS) junctions. Previous devices using this cooling principle fell short of general-purpose refrigerators since they could not be coupled to arbitrary payloads. To create a viable refrigerator, we developed optimized NIS structures and techniques to couple multiple such structures to arbitrary objects. Using three linked NIS devices, we reduced the temperature of a 1.9 cm3 copper stage from 290 mK to 256 mK with 700 pW of cooling power at 290 mK. We present plans to achieve base temperatures near 100 mK. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4793515 |