A computational approach to continuum damping of Alfvén waves in two and three-dimensional geometry
While the usual way of calculating continuum damping of global Alfvén modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting met...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2012-12, Vol.19 (12) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While the usual way of calculating continuum damping of global Alfvén modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4769115 |