Acceleration of electrons to high energies in a standing wave generated by counterpropagating intense laser pulses with tilted amplitude fronts

The dynamics of an electron in a standing wave generated by two relativistically intense linearly polarized laser pulses with tilted amplitude fronts is studied. The analysis is based on solving numerically the relativistic Newton’s equation with the corresponding Lorentz force. A new scheme of lase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2012-07, Vol.19 (7)
Hauptverfasser: Galkin, A. L., Korobkin, V. V., Romanovskiy, M. Yu, Trofimov, V. A., Shiryaev, O. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamics of an electron in a standing wave generated by two relativistically intense linearly polarized laser pulses with tilted amplitude fronts is studied. The analysis is based on solving numerically the relativistic Newton’s equation with the corresponding Lorentz force. A new scheme of laser acceleration of electrons by the direct action of the standing wave is proposed. It is shown that short bunches of electrons with energies reaching several GeV can be created for relativistic laser intensities.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4736717