Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds

A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2012-07, Vol.53 (7), p.1
Hauptverfasser: Khreibani, H., Shramchenko, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title Journal of mathematical physics
container_volume 53
creator Khreibani, H.
Shramchenko, V.
description A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.
doi_str_mv 10.1063/1.4731478
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4731478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671444687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-c432c67bb6969b85111e7483a9aa70b235be8f5ce86c2438cc12b10881047f113</originalsourceid><addsrcrecordid>eNp90N9KwzAUBvAgCs4_F75BQAQVqjlJ2qSXMpwTBEHU25JmCWZ0zUxaRa98EH25PYmRDQVBrw6EXz7O-RDaA3ICpGCncMIFAy7kGhoAkWUmilyuowEhlGaUS7mJtmKcEgIgOR-g-1GvH6JTLb5xZqbaNhu7pjahw_Pg68bMsPUBL97eg1ENnvg-vcXF2wf2Fo_78Oy6VzxK0rSujzgFOOubSdxBG1Y10eyu5ja6G53fDsfZ1fXF5fDsKtMsJ12mOaO6EHVdlEVZyxwAjOCSqVIpQWrK8tpIm2sjC005k1oDrdNZEggXFoBto8Nlbtr2sTexq2YuatM0qjW-jxUUAjjnhRSJ7v-iU9-HNm1XAUnNpPpontTRUungYwzGVvPgZiq8JFR9NVxBtWo42YNVoopaNTaoVrv4_YGmvFKyMrnjpYvadapzvv039E_85MMPrOYTyz4BfMGW1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024810625</pqid></control><display><type>article</type><title>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Khreibani, H. ; Shramchenko, V.</creator><creatorcontrib>Khreibani, H. ; Shramchenko, V.</creatorcontrib><description>A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4731478</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Construction ; Deformation ; Differentials ; Exact sciences and technology ; Homology ; Inverse ; Manifolds ; Mathematical analysis ; Mathematical methods in physics ; Mathematical problems ; Mathematics ; Matrix ; Physics ; Riemann surfaces ; Sciences and techniques of general use ; Vector space</subject><ispartof>Journal of mathematical physics, 2012-07, Vol.53 (7), p.1</ispartof><rights>American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-c432c67bb6969b85111e7483a9aa70b235be8f5ce86c2438cc12b10881047f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4731478$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26259839$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khreibani, H.</creatorcontrib><creatorcontrib>Shramchenko, V.</creatorcontrib><title>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</title><title>Journal of mathematical physics</title><description>A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.</description><subject>Construction</subject><subject>Deformation</subject><subject>Differentials</subject><subject>Exact sciences and technology</subject><subject>Homology</subject><subject>Inverse</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Physics</subject><subject>Riemann surfaces</subject><subject>Sciences and techniques of general use</subject><subject>Vector space</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90N9KwzAUBvAgCs4_F75BQAQVqjlJ2qSXMpwTBEHU25JmCWZ0zUxaRa98EH25PYmRDQVBrw6EXz7O-RDaA3ICpGCncMIFAy7kGhoAkWUmilyuowEhlGaUS7mJtmKcEgIgOR-g-1GvH6JTLb5xZqbaNhu7pjahw_Pg68bMsPUBL97eg1ENnvg-vcXF2wf2Fo_78Oy6VzxK0rSujzgFOOubSdxBG1Y10eyu5ja6G53fDsfZ1fXF5fDsKtMsJ12mOaO6EHVdlEVZyxwAjOCSqVIpQWrK8tpIm2sjC005k1oDrdNZEggXFoBto8Nlbtr2sTexq2YuatM0qjW-jxUUAjjnhRSJ7v-iU9-HNm1XAUnNpPpontTRUungYwzGVvPgZiq8JFR9NVxBtWo42YNVoopaNTaoVrv4_YGmvFKyMrnjpYvadapzvv039E_85MMPrOYTyz4BfMGW1A</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Khreibani, H.</creator><creator>Shramchenko, V.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</title><author>Khreibani, H. ; Shramchenko, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-c432c67bb6969b85111e7483a9aa70b235be8f5ce86c2438cc12b10881047f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Construction</topic><topic>Deformation</topic><topic>Differentials</topic><topic>Exact sciences and technology</topic><topic>Homology</topic><topic>Inverse</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Physics</topic><topic>Riemann surfaces</topic><topic>Sciences and techniques of general use</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khreibani, H.</creatorcontrib><creatorcontrib>Shramchenko, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khreibani, H.</au><au>Shramchenko, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</atitle><jtitle>Journal of mathematical physics</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>53</volume><issue>7</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4731478</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2012-07, Vol.53 (7), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_4731478
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Construction
Deformation
Differentials
Exact sciences and technology
Homology
Inverse
Manifolds
Mathematical analysis
Mathematical methods in physics
Mathematical problems
Mathematics
Matrix
Physics
Riemann surfaces
Sciences and techniques of general use
Vector space
title Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuchsian%20Riemann-Hilbert%20problem%20for%20%E2%80%9Creal%20doubles%E2%80%9D%20of%20Hurwitz%20Frobenius%20manifolds&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Khreibani,%20H.&rft.date=2012-07-01&rft.volume=53&rft.issue=7&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4731478&rft_dat=%3Cproquest_cross%3E1671444687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024810625&rft_id=info:pmid/&rfr_iscdi=true