Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds
A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriat...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2012-07, Vol.53 (7), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 53 |
creator | Khreibani, H. Shramchenko, V. |
description | A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given. |
doi_str_mv | 10.1063/1.4731478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4731478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671444687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-c432c67bb6969b85111e7483a9aa70b235be8f5ce86c2438cc12b10881047f113</originalsourceid><addsrcrecordid>eNp90N9KwzAUBvAgCs4_F75BQAQVqjlJ2qSXMpwTBEHU25JmCWZ0zUxaRa98EH25PYmRDQVBrw6EXz7O-RDaA3ICpGCncMIFAy7kGhoAkWUmilyuowEhlGaUS7mJtmKcEgIgOR-g-1GvH6JTLb5xZqbaNhu7pjahw_Pg68bMsPUBL97eg1ENnvg-vcXF2wf2Fo_78Oy6VzxK0rSujzgFOOubSdxBG1Y10eyu5ja6G53fDsfZ1fXF5fDsKtMsJ12mOaO6EHVdlEVZyxwAjOCSqVIpQWrK8tpIm2sjC005k1oDrdNZEggXFoBto8Nlbtr2sTexq2YuatM0qjW-jxUUAjjnhRSJ7v-iU9-HNm1XAUnNpPpontTRUungYwzGVvPgZiq8JFR9NVxBtWo42YNVoopaNTaoVrv4_YGmvFKyMrnjpYvadapzvv039E_85MMPrOYTyz4BfMGW1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024810625</pqid></control><display><type>article</type><title>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Khreibani, H. ; Shramchenko, V.</creator><creatorcontrib>Khreibani, H. ; Shramchenko, V.</creatorcontrib><description>A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4731478</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Construction ; Deformation ; Differentials ; Exact sciences and technology ; Homology ; Inverse ; Manifolds ; Mathematical analysis ; Mathematical methods in physics ; Mathematical problems ; Mathematics ; Matrix ; Physics ; Riemann surfaces ; Sciences and techniques of general use ; Vector space</subject><ispartof>Journal of mathematical physics, 2012-07, Vol.53 (7), p.1</ispartof><rights>American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-c432c67bb6969b85111e7483a9aa70b235be8f5ce86c2438cc12b10881047f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4731478$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26259839$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khreibani, H.</creatorcontrib><creatorcontrib>Shramchenko, V.</creatorcontrib><title>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</title><title>Journal of mathematical physics</title><description>A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.</description><subject>Construction</subject><subject>Deformation</subject><subject>Differentials</subject><subject>Exact sciences and technology</subject><subject>Homology</subject><subject>Inverse</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Physics</subject><subject>Riemann surfaces</subject><subject>Sciences and techniques of general use</subject><subject>Vector space</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90N9KwzAUBvAgCs4_F75BQAQVqjlJ2qSXMpwTBEHU25JmCWZ0zUxaRa98EH25PYmRDQVBrw6EXz7O-RDaA3ICpGCncMIFAy7kGhoAkWUmilyuowEhlGaUS7mJtmKcEgIgOR-g-1GvH6JTLb5xZqbaNhu7pjahw_Pg68bMsPUBL97eg1ENnvg-vcXF2wf2Fo_78Oy6VzxK0rSujzgFOOubSdxBG1Y10eyu5ja6G53fDsfZ1fXF5fDsKtMsJ12mOaO6EHVdlEVZyxwAjOCSqVIpQWrK8tpIm2sjC005k1oDrdNZEggXFoBto8Nlbtr2sTexq2YuatM0qjW-jxUUAjjnhRSJ7v-iU9-HNm1XAUnNpPpontTRUungYwzGVvPgZiq8JFR9NVxBtWo42YNVoopaNTaoVrv4_YGmvFKyMrnjpYvadapzvv039E_85MMPrOYTyz4BfMGW1A</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Khreibani, H.</creator><creator>Shramchenko, V.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</title><author>Khreibani, H. ; Shramchenko, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-c432c67bb6969b85111e7483a9aa70b235be8f5ce86c2438cc12b10881047f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Construction</topic><topic>Deformation</topic><topic>Differentials</topic><topic>Exact sciences and technology</topic><topic>Homology</topic><topic>Inverse</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Physics</topic><topic>Riemann surfaces</topic><topic>Sciences and techniques of general use</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khreibani, H.</creatorcontrib><creatorcontrib>Shramchenko, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khreibani, H.</au><au>Shramchenko, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds</atitle><jtitle>Journal of mathematical physics</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>53</volume><issue>7</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4731478</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2012-07, Vol.53 (7), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4731478 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Construction Deformation Differentials Exact sciences and technology Homology Inverse Manifolds Mathematical analysis Mathematical methods in physics Mathematical problems Mathematics Matrix Physics Riemann surfaces Sciences and techniques of general use Vector space |
title | Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuchsian%20Riemann-Hilbert%20problem%20for%20%E2%80%9Creal%20doubles%E2%80%9D%20of%20Hurwitz%20Frobenius%20manifolds&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Khreibani,%20H.&rft.date=2012-07-01&rft.volume=53&rft.issue=7&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4731478&rft_dat=%3Cproquest_cross%3E1671444687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024810625&rft_id=info:pmid/&rfr_iscdi=true |