Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds

A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2012-07, Vol.53 (7), p.1
Hauptverfasser: Khreibani, H., Shramchenko, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4731478