Fuchsian Riemann-Hilbert problem for “real doubles” of Hurwitz Frobenius manifolds
A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriat...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2012-07, Vol.53 (7), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A solution to the matrix Fuchsian Riemann-Hilbert problem (inverse monodromy problem) corresponding to “real doubles” of Dubrovin's Frobenius structures on Hurwitz spaces is constructed. The solution is given in terms of certain meromorphic differentials integrated over a basis of an appropriate relative homology space of the Riemann surface. The relationship with the solution of Fuchsian Riemann-Hilbert problem for Dubrovin's Hurwitz Frobenius manifolds is established. A solution of the Riemann-Hilbert problem corresponding to deformations of the “real doubles” is also given. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4731478 |