Anomalous length scaling of carbon nanotube-metal contact resistance: An ab initio study

Employing open-ended carbon nanotubes (CNTs) with and without hydrogen termination, we study the length scaling of metal-CNT contact resistance and its correlation with chemical bonding from first principles. Both models similarly show a transition from the fast-growing short-length scaling to the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2012-05, Vol.100 (21), p.213113-213113-4
Hauptverfasser: Kim, Yong-Hoon, Sung Kim, Hu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Employing open-ended carbon nanotubes (CNTs) with and without hydrogen termination, we study the length scaling of metal-CNT contact resistance and its correlation with chemical bonding from first principles. Both models similarly show a transition from the fast-growing short-length scaling to the slow-growing long-length scaling. However, while the hydrogenated CNTs have much lower short-length resistances than H-free CNTs, Schottky barrier of the former is almost twice thicker and its eventual long-length-limit resistance becomes significantly higher . This demonstrates the critical role of atomistic details in metal-CNT contacts and localized CNT edge states for the Schottky barrier shape and metal-induced gap states.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4721487