The generation and use of delocalized internal coordinates in geometry optimization

Following on from the earlier work of Pulay and Fogarasi [J. Chem. Phys. 96, 2856 (1992)] we present an alternative definition of natural internal coordinates. This set of delocalized internal coordinates can be generated for any molecular topology, no matter how complicated, and is fully nonredunda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1996-07, Vol.105 (1), p.192-212
Hauptverfasser: Baker, Jon, Kessi, Alain, Delley, Bernard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following on from the earlier work of Pulay and Fogarasi [J. Chem. Phys. 96, 2856 (1992)] we present an alternative definition of natural internal coordinates. This set of delocalized internal coordinates can be generated for any molecular topology, no matter how complicated, and is fully nonredundant. Using an appropriate Schmidt-orthogonalization procedure, all standard bond length, bond angle, and dihedral angle constraints can be imposed within our internal coordinate scheme. Combinatorial constraints (in which sums or differences of stretches, bends, and torsions remain constant) can also be imposed. Optimizations on some fairly large systems (50–100 atoms) show that delocalized internal coordinates are far superior to Cartesians even with reliable Hessian information available at the starting geometry.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.471864