Towards phase transferable potential functions: Methodology and application to nitrogen
We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N2. The method is based on a polarizable shell model description of the isolated molecule and uses experimental data to establish the parameters. Con...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 1995-08, Vol.103 (6), p.2272-2285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N2. The method is based on a polarizable shell model description of the isolated molecule and uses experimental data to establish the parameters. Consideration of the Ne dimer shows this to be a conceptual advance over point polarizability descriptions of atomic interaction. Our parametrization of N2 accurately describes not only the molecule’s electrostatic field (i.e., a practical representation of the molecular charge distribution) but also its response to electrical and mechanical stress (polarization and deformation). The purely intermolecular terms in our potential reflect shell-shell interactions. These are parametrized by fitting properties of the low temperature solid phase of nitrogen. We derive a phase transferable potential able to account for the second virial coefficient of the gas phase, the pressure induced phase transition between nitrogen’s cubic and tetragonal phases, and a wide range of liquid properties (pair distribution function, heat of vaporization, self-diffusion coefficient and dielectric constant). |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.469703 |