Dissociative adsorption of H2 on Ni(111)

Ab initio configuration interaction calculations are performed to study the dissociative adsorption of H2 on a Ni(111) surface. The lattice is modeled as an embedded three-layer 41-atom cluster. Ni 3d orbitals are explicitly included on seven Ni atoms on the surface. H is preferentially chemisorbed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1993-03, Vol.98 (6), p.5039-5049
Hauptverfasser: HONG YANG, WHITTEN, J. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ab initio configuration interaction calculations are performed to study the dissociative adsorption of H2 on a Ni(111) surface. The lattice is modeled as an embedded three-layer 41-atom cluster. Ni 3d orbitals are explicitly included on seven Ni atoms on the surface. H is preferentially chemisorbed at a threefold site on Ni(111) and the calculated binding energy of 62 kcal/mol, H–Ni distance of 1.86 Å, and H vibrational frequency of 1176 cm−1 are in excellent agreement with experimental data. H adsorbed at bridge and on-top Ni sites is 2.5 and 8.1 kcal/mol less stable, respectively. The heat of reaction H2 (gas)→2 H (ads) is calculated to be 22.0 kcal/mol exothermic. When two H atoms are adsorbed as nearest neighbors to the same Ni atom, threefold sites are preferred with H atoms adsorbed at fcc–fcc, hcp–hcp, or across atom fcc–hcp sites. These structures are consistent with the observed (2×2)−2H low energy electron diffraction pattern. The average adsorption energy per H is calculated to be 62 kcal/mol for the across atom case. Adsorption of H at a threefold site on Ni(111) has a tendency to block adsorption at adjacent threefold sites; coadsorbed H atoms at adjacent sites are unbound by 13.5 kcal/mol relative to H2 at infinite separation. For three H atoms chemisorbed at separated threefold sites sharing a Ni atom with the equal H–H lateral distances of 2.48 Å, the calculated average adsorption energy is 60 kcal/mol per H. Dissociation of H2 at an on-top Ni site has the lowest activation barrier of 1.6 kcal/mol. For the transition state, the H–H bond length, H-surface height, and H–H vibrational frequency are 1.22 Å, 1.38 Å, and 2506 cm−1, respectively. Molecular H2 adsorbed over an on-top site is bound by 3.4 kcal/mol with a slightly stretched H–H bond length of 0.79 Å, H-surface height of 1.85 Å, and H–H stretching frequency of 3396 cm−1.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.464958