Association reactions at low pressure. IV - The HC3N(+)/HC3N system

Ion cyclotron mass spectrometry is used here to study the reactions between HC3N(+) and HC3N and between HC5N(+) and HC3N at pressures from 1 x 10 to the -7th to 0.001 Torr. The former reaction has both a bimolecular reaction path and a termolecular reaction path. The overall bimolecular reaction ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1991-04, Vol.94 (8), p.5462-5470
Hauptverfasser: Sen, Atish D., Huntress, Wesley T., Jr, Anicich, Vincent G., Mcewan, Murray J., Denison, Arthur B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion cyclotron mass spectrometry is used here to study the reactions between HC3N(+) and HC3N and between HC5N(+) and HC3N at pressures from 1 x 10 to the -7th to 0.001 Torr. The former reaction has both a bimolecular reaction path and a termolecular reaction path. The overall bimolecular reaction rate coefficient is 1.3 x 10 to the -19 cu cm/s. The primary product HC5N(+) represents 90 percent of the product ions, while HC6N2(+) and H2C6N2(+) each represent 5 percent. The termolecular association rate coefficient is 3.7 x 10 to the -24th cm exp 6/s, with He as the third body. The mean lifetime of the collision is 180 microsec. HC5N(+) reacts with HC3N to form the adduct ion H2C8N2(+) through both bimolecular and termolecular reactions. The bimolecular rate coefficient is 5.0 x 10 to the -10th cu cm/s and the termolecular one is 1.2 x 10 to the -22nd cm exp 6/s, with HC3N as the third body.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.460481