On obtaining interatomic potentials from multiproperty fits to experimental data
High-resolution differential cross section (DCS) and accurate new limiting diffusion measurements for all the unlike-pair He+rare-gas systems are combined in constructing new multiproperty interatomic potentials. The new potentials predict most properties available for these systems, including indep...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 1991, Vol.94 (1), p.296-309 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-resolution differential cross section (DCS) and accurate new limiting diffusion measurements for all the unlike-pair He+rare-gas systems are combined in constructing new multiproperty interatomic potentials. The new potentials predict most properties available for these systems, including independent high-resolution DCS measurements. Remaining discrepancies with earlier multiproperty potentials for HeKr and HeXe are attributed to incompatibilities among data sets used in the multiproperty fitting procedure. It is also shown that the 5% difference in well depths between two recently proposed potentials for HeXe is due to some of the data used in constructing these potentials, and that the DCS measurements of those studies are mutually consistent. Finally, the present potentials are refined slightly for agreement with high-energy cross section measurements. At the present level of reliability for DCS and dilute-gas data, it seems likely that high-resolution DCS and accurate (limiting) diffusion measurements will assist in determining He+molecule potentials. These two properties are particularly useful because they are independent of uncertainties in the corresponding molecule+molecule potentials. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.460397 |